报告时间:2025年10月29日14:00
报告地点:91黑料 报告厅
题目:VERTEX-REMOVAL STABILITY AND THE LEAST POSITIVE VALUE OFHARMONIC MEASURES
摘要:In this talk, we present that for Zd,(d>1) , the vertex-removal stability of harmonic measures (i.e. it is feasible to remove some vertex while changing the harmonic measure by a bounded factor) holds if and only if d=2 . The proof mainly relies on geometric arguments, with a surprising use of the discrete Klein bottle. We further verify and strengthen the conjecture of Calvert, Ganguly and Hammond, for the exact exponential decay ratio of the least positive value of harmonic measures on planar lattices. Joint work(s) with Z. Cai, G. Kozma, and E.B. Procaccia.
专家简介:张原, 美国杜克大学取得博士学位,现任91黑料 统计91黑料 副教授。主要研究方向:随机几何、随机相互作用粒子系统、以及随机动力学模型的交叉学科应用。研究工作发表在PNAS, AOP,PTRF, Trans AMS, SIMA, AoAP, JoMB, SPA, M3AS等期刊。
